Robust Multiuser Detection Using Kalman Filter and Windowed PAST Algorithm
نویسندگان
چکیده
We propose some robust adaptive multiuser detection schemes for direct-sequence codedivision multiple-access (DS-CDMA) multipath frequency-selective fading channels. Multiple access interference (MAI) and intersymbol interference (ISI) are presented in an identical format using expanded signal subspace, which facilitates multiuser detection in a symbol-by-symbol fashion. This paper contributes to the theoretical aspect of adaptive multiuser detection by proving that the optimum linear multiuser detectors that achieve maximum signal-to-interference-plus-noise-ratio (SINR) must exist in the signal subspace, and the theoretic SINR upper bound is also derived. Another contribution of this paper is to propose the design of multiuser detectors in an expanded signal subspace, and introduce subspace estimation and Kalman filtering algorithms for their adaptive implementation. To robustify the adaptive detectors against subspace estimation and channel estimation errors, a modified projection approximation subspace tracking (PAST) algorithm is proposed for subspace tracking. It is demonstrated by simulations that these adaptive detectors effectively suppress both MAI and ISI and converge to the optimum SINR. They are robust against subspace estimation errors and channel estimation errors compared to the conventional Wiener minimum mean square error (MMSE) detector.
منابع مشابه
Covariance Analysis of a vector tracking GPS receiver based on MMSE multiuser Detection
In high dynamic conditions, using vector tracking loops instead of scalar tracking loops in GPS receivers is proved as an efficient method to compensate the performance. The Minimum Mean Squared Error detector as a multiuser detector is applied in the vector tracking loop for more reliability and efficiency. The Kalman filter does the two tasks of tracking and extracting the navigation data aft...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملSubspace-Based Blind Adaptive Multiuser Detection Using Kalman Filter
A new blind adaptive multiuser detection scheme based on a hybrid of Kalman filter and subspace estimation is proposed. It is shown that the detector can be expressed as an anchored signal in the signal subspace and the coefficients can be estimated by the Kalman filter using only the signature waveform and the timing of the desired user. The resulting subspace-based algorithm brings the benefi...
متن کامل